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a b s t r a c t

We present a new collocated numerical scheme for the approximation of the Navier–
Stokes and energy equations under the Boussinesq assumption for general grids, using
the velocity–pressure unknowns. This scheme is based on a recent scheme for the diffusion
terms. Stability properties are drawn from particular choices for the pressure gradient and
the non-linear terms. Convergence of the approximate solutions may be proven mathemat-
ically. Numerical results show the accuracy of the scheme on irregular grids.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Finite volume methods have been widely used in computational fluid dynamics for a long time; they are well adapted to
the discretization of partial differential equations under conservative form; one of their attractive features is that the result-
ing discretized equation has a clear physical interpretation [9]. In the framework of incompressible fluid flows, two strategies
are often opposed, namely staggered and collocated schemes. The staggered strategy, which has become very popular since
Patankar’s book [9], remains mainly restricted to geometrical domains with parallel and orthogonal boundary faces. There-
fore, for computations on complex domains with general meshes, the collocated strategy which consists in approximating all
unknowns on the same set of points (called collocation points but also cell centers or simply centers), is often preferred, even
though the pressure–velocity coupling demands some cure for the stabilization of the well-known checkerboard pressure
modes; to this purpose, various pressure stabilization procedures, based on improvements of the Momentum Interpolation
Method proposed by Rhie and Chow [10], are frequently used [8].

In [3,11], a collocated finite volume scheme for incompressible flows is developed on so called ‘admissible’ unstructured
meshes, that are meshes satisfying the two following conditions: the straight line joining the centers of two adjacent control
volumes is perpendicular to the common edge, and the neighboring control volumes and the associated centers are arranged
. All rights reserved.
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in the same order, with respect to the common edge. Rectangular or orthogonal parallelepipedic meshes, triangular (2D) or
tetrahedral (3D) Delaunay meshes, and Voronoi meshes fulfill these requirements. Under this assumption, the isotropic dif-
fusion fluxes can be consistently approximated by a two-point finite difference scheme. Using this approximation for a pure
diffusion problem yields a symmetric ‘M-matrix’ (which ensures monotony); the stencil is limited to the control volume
itself and its natural neighbors and it leads to the classical five- and seven-point schemes on rectangles and orthogonal
parallelepipeds. Unfortunately, although the use of such grids considerably widens the variety of geometric shapes which
can be gridded, it is far from solving all the critical needs resulting from actual problems:

� For complex 3D domains, it is well-known that the use of a large number of flat tetrahedra produces high discretization
errors; generalized hexahedric meshes are often preferred: these are made of 3D elevations of quadrangular meshes, for
which the faces of the control volumes may no longer be planar.

� To our knowledge, there is yet no mesh software able to grid any geometrical shape in 3D using Voronoi or Delaunay tes-
sellations while respecting the boundaries and the local refinement requirements.

� In compressible flows, the approximation of the full tensor by the usual two-point scheme is no longer consistent even on
admissible meshes; multi-point approximations are therefore required.

� Boundary layers are classically meshed with refined grids, so that the discretization scheme should be able to deal with
non-conforming meshes.

Whereas there is no real difficulty to discretize the convective terms for general non-conforming grids, writing accurate
diffusion approximations, particularly relevant for low Reynolds (Péclet) flows, is still a challenge on such meshes.

In the early 80s, Kershaw [7] first proposed a nine-point scheme on structured quadrilateral grids by using the restrictive
assumption of a smooth mapping between the logical mesh and the spatial coordinates. Since then, numerous works have
been published to efficiently solve the diffusion equations in general geometry (see [1] for a review of recent papers). The
drawbacks of the actual schemes for diffusion are often linked with one or several of these key points:

� a non-local stencil (quite dense matrices);
� cell-centered but also face-centered unknowns (large matrices);
� non-symmetric definite positive matrices (loss of the energy balance);
� loss of the convergence or of the accuracy on some particular grids;
� loss of monotony for solutions in purely diffusive problems (the resulting matrix is not an ‘M-matrix’).

We focus in this paper on the approximation of the Navier–Stokes and energy equations under the Boussinesq
assumption, using a new scheme for diffusion terms. This scheme is shown to provide a cell-centered approximation
with a quite reduced stencil, leading to symmetric definite positive matrices and allowing a mathematical proof of con-
vergence. Although the diffusion matrix may not be shown to be an M-matrix in the general case, the maximum prin-
ciple is nevertheless preserved in our numerical three-dimensional simulations. In this scheme, the discrete pressure
gradient and the non-linear contributions are approximated so that the discrete kinetic and energy balances mimic their
continuous counterparts. Indeed, the pressure gradient is chosen as the dual operator of the discrete divergence, and the
discretization is such that there is no contribution of the non-linear velocity transport in the increase of kinetic energy.
In order to suppress the pressure checkerboard modes, the mass balance is stabilized by a pressure term which only
redistributes the fluid mass within subsets of control volumes, the characteristic size of which is two or three times
the local mesh size.

The remainder of this paper is divided into four sections. In Section 2, the continuous formulation is presented in the
framework of free convection. Section 3 presents the discrete scheme for general non-conforming meshes, with illustrations
in the simplified case of uniform rectangular grids, and some mathematical properties. The fourth section is devoted to the
numerical validation, first with analytical solutions and then with a classical natural convection problem.

2. Continuous formulation

Let d be the dimension of the space ðd ¼ 2 or 3Þ and let X � Rd be an open polygonal connected domain. For x 2 X, our
aim is to compute an approximation of the velocity uðxÞ ¼

Pd
i¼1uðiÞðxÞei, the pressure pðxÞ and the temperature TðxÞ, solution

of the steady and dimensionless Navier–Stokes and energy equations under the Boussinesq approximation:
� PrDuþ $pþ ðu � $Þu� RaPr Te3 ¼ f ðxÞ in X; ð1aÞ
� DT þ ðu � $ÞT ¼ gðxÞ in X; ð1bÞ
divu ¼ 0 in X; ð1cÞ
where e3 indicates the vertical upward direction, f ðxÞ ¼
Pd

i¼1f ðiÞðxÞei and gðxÞ are dimensionless regular functions modeling
source or sink in the momentum or heat balances; Pr and Ra denote the Prandtl and Rayleigh numbers, respectively. We con-
sider the case of the homogeneous Dirichlet boundary conditions for the velocity and of the mixed Dirichlet–Neumann
boundary conditions for the temperature. These boundary conditions read as follows:
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uðxÞ ¼ 0 x 2 C;

TðxÞ ¼ TbðxÞ x 2 C1;

�$TðxÞ � nðxÞ ¼ qbðxÞ x 2 C2;

8><>: ð2Þ
where C1;C2 are subsets of the boundary C of the domain X such that C1 \ C2 ¼ ; and C1 [ C2 ¼ C, and nðxÞ is the outward
unit normal vector to the boundary. We assume that Tb is the trace on C1 of a function again denoted Tb such that Tb 2 H1ðXÞ,
and we define the functional space H1

C1 ;0
ðXÞ ¼ fT 2 H1ðXÞ; TðxÞ ¼ 0 on C1g. Then a weak formulation of Eqs. (1a)–(1c) with

boundary conditions (2) reads.
Find u 2 H1

0ðXÞ
d, p 2 L2ðXÞ with

R
X pðxÞdx ¼ 0, and T with T � Tb 2 H1

C1 ;0
ðXÞ such that
Pr
Z

X
$u : $v dx�

Z
X

pdivv dxþ
Z

X
divðu� uÞ � v dx� RaPr

Z
X

Te3 � v dx ¼
Z

X
f ðxÞ � v dx; 8v 2 H1

0ðXÞ
d
; ð3aÞ

Z
X

$T � $hdxþ
Z

X
divðuTÞhdx ¼

Z
X

gðxÞhdx�
Z

C2

qbðxÞhðxÞdx; 8h 2 H1
C1 ;0
ðXÞ: ð3bÞ

divuðxÞ ¼ 0 for a:e: x 2 X; ð3cÞ
Although our discretization scheme belongs to the finite volume family, we shall also be using the weak form (3a)–(3c) in
our discretization. Indeed, the discretization of the diffusive terms�PrDu in (1a) and�DT in (1b) is obtained by the construc-
tion of a discrete gradient which is then used to approximate the term Pr

R
X $u : $v dx in (3a) and

R
X $T � $hdx in (3b).
3. Numerical scheme

In this section, we present the discretization scheme for Problem (1) and (2) under its weak form (3). The next paragraph
is devoted to the notations for general discretization meshes and to the description of the discrete degrees of freedom. We
then describe the approximation of the diffusive terms (Section 3.2). Because of the collocated choice of the unknowns, a
stabilization is needed. The stabilization we choose is imposed on the mass flux (rather than the overall balance) and also
appears in the momentum and energy equations through the convective contributions: this is described in Section 3.3. It
also involves the choice of some coefficients which are defined in Section 3.4. The complete discrete problem is finally given
in Section 3.5, and some of its mathematical properties sketched in Section 3.6.
3.1. Mesh and discrete spaces

We denote by D ¼ ðM; E;PÞ a space discretization, where (see Fig. 1):

� M is a finite family of ‘control volumes’, i.e. non-empty connected open disjoint subsets of X such that X ¼ [K2MK . For any
control volume K 2M, we denote by @K ¼ K n K its boundary, mK > 0 its measure (area if d ¼ 2, volume if d ¼ 3) and hK its
diameter (that is the largest distance between any two points of K).

� E is a finite family ‘edges’ (d ¼ 2) or ‘faces’ (d ¼ 3) of the mesh; these are assumed to be non-empty open disjoint subsets
of X, which are included in a straight line if d ¼ 2 or in a plane if d ¼ 3, and with non-zero measure. We assume that, for all
K 2 M, there exists a subset EK of E such that @K ¼ [r2EK r. The set E is assumed to be partitioned into external and interior
edges (d ¼ 2) or faces (d ¼ 3): E ¼ Eint [ Eext, with r � @X for any r 2 Eext and r � X n @X for any r 2 Eint. Any boundary
edge r is assumed to belong to a set EK for one and only one K 2M; any interior edge r is assumed to belong to exactly
two sets EK and EL with K – L, and in this case r is included in the common boundary of K and L, denoted K=L. Note that
there are cases in which K=L includes two or more edges or faces, see for instance the third mesh for the unit cube, Section
4.1, and Fig. 5b. We also assume that, if r 2 Eext, then either r � C1 or r � C2. For all r 2 E, we denote by xr and mr the
barycenter and the measure of r. For all K 2 M and r 2 EK , we denote by nK;r the unit vector normal to r outward to K.

� P is a family of collocation points P ¼ ðxKÞK2M of X which is chosen such that for all K 2 M and for all x 2 K , the property
½xK ; x� � K holds. Note that this choice is possible for quite general polygons, including those with re-entrant corners, see
Fig. 1. The Euclidean distance dK;r between xK and the hyperplane including r is thus positive. We also denote by CK;r the
cone with vertex xK and basis r.

Next, for any r 2 Eint, we choose some real coefficients ðbL
rÞL2M such that the barycenter xr of r is expressed by
xr ¼
X
L2M

bL
rxL;

X
L2M

bL
r ¼ 1: ð4Þ
In three space dimensions, it is always possible to restrict the number of non-zero coefficients bL
r to four (in practice, the

scheme has been shown to be robust with respect to the choice of these four control volumes, taken close enough to the
considered edge).



Fig. 1. Cell K and neighbors for a mesh of a two-dimensional (d ¼ 2) domain X: r an interior edge (r � K=L), r0 a boundary edge (r0 2 EK ), mK the measure
of the cell K, xK the collocation point, xr the barycenter of r of measure mr , dK;r the Euclidean distance between xK and r, nK;r the unit outward vector
normal to r and CK;r the cone with vertex xK and basis r (similar notations apply for the edge r0).
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Note that in the case of an uniform rectangular grid which is depicted in Fig. 2, an obvious choice for the coefficients bL
r is

obtained by noticing that xiþ1=2;j ¼ ðxi;j þ xiþ1;jÞ=2 and xi;jþ1=2 ¼ ðxi;j þ xi;jþ1Þ=2. Thus for any edge r, only two coefficients bL
r

need to be non-zero.

We now define the finite dimensional space RM � RE (where an element m 2 RM � RE is defined by the family of real values
ððmKÞK2M; ðmrÞr2EÞ) and the following subspaces:

� XD ¼ fu 2 RM � RE ; 8r 2 Eint;ur ¼
P

L2MbL
ruLg (the dimension of XD is the number of control volumes plus that of bound-

ary edges).
� XD0 ¼ fu 2 XD; 8r 2 Eext; ur ¼ 0g (the dimension of XD0 is the number of control volumes).
� XDC1 ;0

¼ fh 2 XD; 8r 2 Eext \ C1; hr ¼ 0g (the dimension of XDC1 ;0
is the number of control volumes plus that of boundary

edges on C2).
3.2. Discretization of diffusive terms

Let us first define a discrete gradient for the elements of XD on cell K 2M. We set, for any u 2 XD and K 2 M:
$K u ¼ 1
mK

X
r2EK

mrður � uKÞnK;r: ð5Þ
Note that this is a centered gradient.

As an illustration, consider the case of the two-dimensional uniform rectangular grid depicted in Fig. 2, let u 2 XD, and choose
the natural choice bL

r ¼ 1=2 if r is a side of L and 0 otherwise. Then with the (natural) notations of Fig. 2, one has
$Ki;j
u ¼

1
2hx
ðuiþ1;j � ui�1;jÞ

1
2hy
ðui;jþ1 � ui;j�1Þ

 !
;



Fig. 2. Cell K and neighbors for a mesh of a two-dimensional (d ¼ 2) domain X meshed with an uniform rectangular grid with step size hx in the x-direction
and hy in the y direction: r ¼ ri;j�1=2 and r0 ¼ riþ1=2;j two interior edges with ri;j�1=2 � Ki;j=Ki;j�1 and riþ1=2;j � Ki;j=Kiþ1;j , mK ¼ hxhy the measure of any cell K,
xK the collocation point (center of gravity), xr the barycenter of r of measure mr , dK;r ¼ hx=2 the Euclidean distance between xK and r, nK;r the unit outward
vector normal to r and CK;r the cone with vertex xK and basis r.

Fig
and
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if we apply this formula to the element 1Ki;j
2 XD with all of components equal to zero except for the one associated with Ki;j

which is equal to 1, we get that the vector $L1Ki;j
is zero for all control volumes L except those neighboring Ki;j, as shown in

Fig. 3a. Considering the checkerboard solutions on uniform rectangular grids, the above expression shows that this discrete
gradient may vanish for some non-constant functions.
a b

. 3. Gradient of the element 1Ki;j
of XD for an uniform rectangular grid with step size hx in the x direction and hy in the y-direction; (a) centered gradient

(b) stabilized gradient.
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An approximation of the diffusive terms Pr
R

X $u : $v dx in 3a and
R

X $T � $hdx in 3b using this discrete gradient (5) would
yield a non-coercive form. Thus, we shall work with a modified gradient, defined in (6) and (7) below.

To this end, for all r 2 EK we first define RK;ru 2 R which may be seen as a consistency error on the normal flux, by
RK;ru ¼
ffiffiffi
d
p

dK;r
ur � uK � $K u � ðxr � xKÞð Þ:
One may note that RK;ru ¼ 0 if uK and ur are the exact values of a linear function at points xK and xr, for all K and r 2 EK . We
then give the following expression for a stabilized discrete gradient of u 2 XD in each cone CK;r:
$K;ru ¼ $K uþ RK;runK;r: ð6Þ
In the case of the uniform rectangular grid given in Fig. 2 and for K ¼ Ki;j and r ¼ riþ1=2;j, we find:
RKi;j ;riþ1=2;j
¼

ffiffiffi
2
p

2hx
ðuiþ1;j þ ui�1;j � 2ui;jÞ:

The stabilized discrete gradient (6) applied to the above defined element 1Ki;j
of XD provides non-zero contributions on the tri-

angular subcells CK;r of the cell Ki;j and of its neighbors (Fig. 3b).

The global discrete gradient is chosen as the function $Du:
$DuðxÞ ¼ $K;ru; for a:e: x 2 CK;r; 8K 2 M; 8r 2 EK : ð7Þ
We then plan to approximate the term
R

X $uðxÞ � $vðxÞdx by
Z
X

$DuðxÞ � $DvðxÞdx ¼
X
K2M

X
r2EK

mrdK;r

d
$K;ru � $K;rv ; 8u; v 2 XD: ð8Þ
In fact, it is shown in [4,5] that this expression defines a symmetric inner product on XD, and provides a good approximation
for

R
X $uðxÞ � $vðxÞdx; this approximation may be seen as a low degree discontinuous Galerkin method. If one seeks a finite

volume interpretation of this scheme, it is possible, expressing ur and vr for all r 2 Eint thanks to the relations (4), to show
that
 Z

X
$DuðxÞ � $DvðxÞdx ¼

X
K2M

X
L2N K

FK;LðuÞvK þ
X

r2EK\Eext

FK;rðuÞðvK � vrÞ
 !

; ð9Þ
where for any K 2 M, N K is the subset of cells playing a part in the barycenter expression of xr, for all edges of the cell K and
of the neighbors of K, i.e. N K ¼ fM 2M; bM

r0 – 0 8r0 2 ELv ;8L 2 Mr 8r 2 EKg; FK;LðuÞ is a linear function of the unknowns
ðuLÞL2M which is such that FK;LðuÞ ¼ �FL;KðuÞ. In the general case, the expression of FK;LðuÞ is rather complicated (see [5]).

In the case of the uniform rectangular grid of Fig. 3, this expression simplifies into the usual two-point flux; for instance, the flux
from Ki;j to Kiþ1;j reads
FKi;j ;Kiþ1;j
ðuÞ ¼ hy

ui;j � uiþ1;j

hx
:

More generally, a two-point flux is also obtained in the two or three-dimensional non-uniform rectangular cases. Indeed, locating xK at
the center of gravity of the cell K, the relation ðxr � xKÞ=dK;r ¼ nK;r holds. It is then possible to write xr ¼ðdL;rxKþdK;rxLÞ=ðdL;r þ dK;rÞ
and urðmÞ ¼ ðdL;ruK þ dK;ruLÞ=ðdL;r þ dK;rÞ for all r such that r � K=L, and for all u 2 XD. Using the identity
X

r2EK

mrðxr � xKÞnt
K;r ¼ mKI

where superscript ‘t’ designates the transposition and I the identity matrix, we obtain [5, Lemma 2.1]:Z
X

$DuðxÞ � $DvðxÞdx ¼
X

r2Eint ;r�K=L

mr

dK;r þ dL;r
ðuL � uKÞðvL � vKÞ þ

X
r2Eext\EK

mr

dK;r
ður � uKÞðvr � vKÞ:

Then the previous relation leads to define N K as simply the set of the natural neighbors of K, and to define the fluxes by the
natural two-point difference scheme, in the same manner as in [3,11]:

FK;LðuÞ ¼
mr

dK;r þ dL;r
ðuK � uLÞ for r 2 Eint;r � K=L;

FK;rðuÞ ¼
mr

dK;r
ðuK � urÞ for r 2 Eext \ EK :

ð10Þ

The classical and cheap five- and seven-point schemes on rectangular or orthogonal parallelepipedic meshes is then recovered.
An advantage can then be taken from this property, by using meshes which consist in orthogonal parallelepipedic control vol-
umes in the main part of the interior of the domain, as illustrated by the cone-shaped cavity (Fig. 5c) in Section 4.1.
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Note that the approximation of �
R

K Dudx is obtained by letting vK ¼ 1, vL ¼ 0 for L – K and vr ¼ 0 for r 2 Eext in (9):
�
Z

K
Dudx ’

X
L2N K

FK;LðuÞ þ
X

r2EK\Eext

FK;rðuÞ;
so that we may define an approximate Laplace operator DD by the constant values DK u on the cells K:
�DK u ¼ 1
mK

X
L2N K

FK;LðuÞ þ
X

r2EK\Eext

FK;rðuÞ
 !

: ð11Þ
In the case of the uniform rectangular grid of Fig. 3, this discrete Laplacian leads to the usual five-point formula:
�DKi;j
u ¼ 1

h2
x

2ui;j � uiþ1;j � ui�1;j
� �

þ 1

h2
y

2ui;j � ui;jþ1 � ui;j�1
� �

:

In the general case, the stencil of the discrete operator on cell K is defined byN K (see relation (11)) and therefore depends
on the way the barycenters xr are computed. For general grids, the equation for a given cell usually concerns the unknowns
associated to itself, its neighbors, the neighbors of its neighbors and possibly some additional adjacent cells. The resulting
matrix is usually not an ‘M-matrix’, except on particular meshes such as conforming orthogonal parallelepipeds, in which
case we obtain the usual two-point flux scheme, as previously pointed out.
3.3. Pressure–velocity coupling, mass balance and convective contributions

For all u 2 ðXD0 Þ
d, we define a discrete divergence operator by
divK u ¼ 1
mK

X
r2EK

mrur � nK;r; 8K 2M: ð12Þ
where ur ¼
Pd

i¼1uðiÞr ei. Notice that
divK u ¼
Xd

i¼1

$K uðiÞ
� �ðiÞ

;

with $K uðiÞ defined by (5).

In the case of the uniform rectangular mesh of Fig. 2, this operator reads:
divKi;j
u ¼ 1

2hx
uð1Þiþ1;j � uð1Þi�1;j

� �
þ 1

2hy
uð2Þi;jþ1 � uð2Þi;j�1

� �
:

We then define the function divDu by the relation
divDuðxÞ ¼ divK u; for a:e: x 2 K; 8K 2M:
The discrete gradient operator used for the pressure gradient is defined as the dual of this divergence operator. More pre-
cisely, we mimic at the discrete level the (formal) equality

R
X p divv dx ¼ �

R
X $p � v dx. The discrete equivalent ofR

X p divv dx reads
P

L2MmL pL divLv with v 2 ðXDÞd and p 2 XD; we then define the discrete pressure gradient which we
denote b$K p (on cell K), such that
X

L2M
mL
b$Lp � vL ¼ �

X
L2M

mLpLdivLv 8 v 2 ðXDÞd:
From the definition of the divergence (12) and of XD, we thus seek ðb$LpÞL2M such that
X
L2M

mL
b$Lp � vL ¼ �

X
L2M

pL

X
r2EL\Eint

mr
X

M2M
bM

r vM � nL;r: ð13Þ
Taking for v the element of ðXDÞd with components v ðjÞL ¼ 1 if j ¼ i and L ¼ K , and 0 otherwise, we thus get
mK
b$K p ¼ �

X
L2M

pL

X
r2EL\Eint

mrbK
rnL;r ¼

X
r2Eint ;r�L=M

mrbK
rðpM � pLÞnL;r: ð14Þ
Remark that b$K p is neither constructed with the discrete gradient (5) nor with the stabilized one (6); its expression is the
dual form of the divergence (12).
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In the case of non-uniform rectangles (d ¼ 2) or parallelepipeds (d ¼ 3) with collocated points at the gravity center of the cells,
and for all r 2 Eint with r � K=L, we only need two non-zero coefficients bM

r : bK
r ¼

dL;r
dK;rþdL;r

and bL
r ¼

dK;r
dK;rþdL;r

. Therefore, relation
(14) reduces to

mK
b$K p ¼

X
r2EK ;r�K=L

mr
dL;r

dK;r þ dL;r
ðpL � pKÞnK;r:

Using pK

P
r2EK

mrnK;r ¼ 0,

mK
b$K p ¼

X
r2EK ;r�K=L

mr
dL;rpL þ dK;rpK

dK;r þ dL;r
nK;r þ

X
r2EK\Eext

mrpK nK;r

For a uniform grid and a control volume without boundary faces, the above expression resumes to

mK
b$K p ¼

X
r2EK ;r�K=L

mr
pL þ pK

2
nK;r;

which provides, in the particular case of Fig. 2, the usual formulation

hxhy
b$K p ¼ hy

piþ1;j � pi�1;j

2
þ hx

pi;jþ1 � pi;j�1

2
:

As recalled in the introduction of this paper, a pressure stabilization method is implemented in the mass conservation
equation in order to prevent from oscillations of the pressure, as for instance in [2] in the finite element setting, [8,10] in
the finite volume setting. The originality of our approach is that we directly include the stabilizing diffusive pressure flux
in the approximated mass flux, so that it will appear not only (as usual) in the mass equation, but also in the momentum
equation through the non-linear convective term. From the mathematical point of view, this helps in obtaining simple esti-
mates on the velocity and pressure, but more importantly, it ensures that the contribution of the discrete non-linear convec-
tive term to the kinetic (and thermal) energy balance is zero, just as in the continuous case. Let us define the stabilized mass
flux across r � K=L by
Uk
K;rðu;pÞ ¼ mr ur � nK;r þ krðpK � pLÞð Þ; ð15Þ
where ðkrÞr2Eint
is a given family of positive real numbers, the choice of which is discussed below. Note that the quantity

krðpK � pLÞmay be seen as a numerical pressure diffusion flux, and that the overall numerical flux remains conservative, that
is, if r � K=L then Uk

K;rðu; pÞ þUk
L;rðu; pÞ ¼ 0.

In the case of the uniform rectangular mesh of Fig. 2, the expression of this flux through a vertical edge riþ1=2;j reads:
Uk
Ki;j ;riþ1=2;j

ðu;pÞ ¼ hy

2
uð1Þiþ1;j þ uð1Þi;j

� �
þ hykiþ1=2;jðpi;j � piþ1;jÞ:
We then use the modified flux, in order to define a stabilized centered transport operator which is defined, for all u 2 ðXD0 Þ
d,

w 2 XD and K 2 M, by
divk
Kðw;u;pÞ ¼

1
mK

X
r2EK ;r�K=L

Uk
K;rðu;pÞ

wK þwL

2
:

An interesting remark is that, in the case where the mass balance equation in the control volume K is satisfied, that is
divk
Kð1;u;pÞ ¼

1
mK

X
r2EK\Eint

Uk
K;rðu;pÞ ¼ 0;
then
 X
r2EK\Eint

Uk
K;rðu;pÞwK ¼ 0;
so that the following relation also holds:
divk
Kðw;u;pÞ ¼

1
mK

X
r2EK ;r�K=L

Uk
K;rðu;pÞ

wL �wK

2
:

We shall use this latter form in the practical implementation, in particular in the discretization of the non-linear convection
term. Indeed, it is more efficient when computing the Jacobian matrix of the momentum equation, since it avoids summing
up values of the same amplitude.
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In the particular case of the uniform rectangular grid of Fig. 2, the summation
P

r2EK ;r�K=L involves the four edges between the
control volume K ¼ Ki;j and its neighbors L ¼ Kiþ1;j, Ki�1;j, Ki;jþ1, Ki;j�1. If L ¼ Ki�1;j the expression which appears in the summa-
tion reads

hy �
uð1Þi;j þ uð1Þi�1;j

2
þ ki�1=2;jðpi;j � pi�1;jÞ

 !
wi;j þwi�1;j

2
:

When the local grid Reynolds (or Péclet) number is much larger than 1, an upwind scheme must be applied that consists
in substituting divk

Kðw;u; pÞ by
divk;up
K ðw;u; pÞ ¼ 1

mK

X
r2EK ;r�K=L

maxðUk
K;rðu;pÞ;0ÞwK þminðUk

K;rðu;pÞ;0ÞwL

� �
:

In both the centered or upwind cases, the functions divk
Dðw;u; pÞ and divk;up

D ðw;u; pÞ are defined by their constant values in
each control volume. For u;w 2 ðXD0 Þ

d, we also define the centered vector divergence operator divk
Dðw;u; pÞ such that the i-th

component of divk
Dðw;u; pÞ is equal to divk

DðwðiÞ;u; pÞ, for i ¼ 1; . . . ; d; a similar expression applies for the upwind vector
divergence operator divk;up

D ðw;u; pÞ.
3.4. Choice for the parameters ðkrÞr2Eint

Different strategies can be applied to define the parameters ðkrÞr2Eint
. Amongst all of them we applied the ‘cluster stabil-

ization method’ [3,11]; it consists in constructing a partition of M, denoted G, and setting kr ¼ k > 0 if there exists G 2 G
(such G �M is called a cluster) with r � K=L, K and L belonging to G, and kr ¼ 0 otherwise. Here is an example of an algo-
rithm creating a cluster partition:
(1) for all cells K 2 M, initialize a new cluster if K and its neighboring cells do not already belong to a cluster;
(2) for any remaining isolated cell L, connect it to the closest cluster having the largest number of common edges with L.

This algorithm is now applied to the mesh of Fig. 4a, the cells being described from left to right, from the lower to the
upper row. Fig. 4b and c illustrates the first cluster and the set of the clusters at the end of the first step of the algorithm.
Fig. 4d shows the clusters after the isolated (unnumbered) cells of Fig. 4c have been connected. The choice of the value k
depends on the physical problem and it must be chosen both large to avoid the appearance of spurious modes and small
to preserve an accurate approximation of the mass equation. In [11], comparisons with other stabilization methods were
performed and the results showed that solutions are little sensitive to the value of k. For the natural convection example
presented in Section 4.2, k ¼ 10�8.

3.5. Resulting discrete equations

We denote by Tb;D the element T 2 XD such that TK ¼ 0 for all K 2M, Tr ¼ 0 for all r 2 Eint and all r 2 Eext with r � C2,
and, for all r 2 Eext with r � C1,
Tr ¼
1

mr

Z
r

TbðxÞdsðxÞ: ð16Þ
Let HMðXÞ � L2ðXÞ denote the set of functions which are constant in each K 2 M; for any function q 2 HMðXÞ, we shall de-
note by qK its constant value on K 2M. We then define the mapping PM : XD ! HMðXÞ by m 2 XD#PMm with PMmðxÞ ¼ mK for
a.e. x 2 K and all K 2 M. We also define the mapping PE : XD ! L2ðCÞ by m 2 XD#PEm with PEmðxÞ ¼ mr for a.e. x 2 r and all
r 2 Eext.

Let us then use the previously defined discrete operators to formulate a discrete approximation to problem (3):
Find u ¼ ðuðiÞÞi¼1;d 2 ðX

D
0 Þ

d, p 2 HMðXÞ with
R

X pðxÞdx ¼
P

K2MmK pK ¼ 0 and T � Tb;D 2 XDC1 ;0
such that
Pr
Z

X
$Du : $Dv dx�

Z
X

p divDv dxþ
Z

X
divk

Dðu;u;pÞ � PMv dx� RaPr
Z

X
PMT e3 � PMv dx ¼

Z
X

f � PMv dx; 8v 2 ðXD0 Þ
d;

ð17ÞZ
X

$DT � $Dhdxþ
Z

X
divk

DðT;u;pÞPMhdx ¼
Z

X
g PMhdx�

Z
C2

qbPEhds; 8h 2 XDC1 ;0
; ð18Þ

divk
Dð1;u;pÞ ¼ 0 a:e: in X: ð19Þ
We then deduce from (17) the d discrete momentum balances over the control volume K, letting mðiÞ ¼ 1 in K, and 0 other-
wise; these equations read, in vector form
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Fig. 4. Example of cluster construction: (a) mesh, (b) first cluster, (c) all the clusters are constructed but isolated cells (unnumbered cells) still remain and
(d) the isolated cells are connected to neighboring clusters.
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�Pr mKDK uþ
X

r2Eint ;r�M=L

mrbK
rðpM � pLÞ nL;r þ

X
r2EK ;r�K=L

Uk
K;rðu;pÞ

uK þ uL

2
� RaPr mK TK e3 ¼

Z
K

f dx ð20Þ
(where �DK u is the vector valued discrete Laplace operator defined by (11) for each of its components). Similarly, we deduce
from (18) the discrete energy balance over the control volume K, letting h ¼ 1 in K, and 0 otherwise; this equation reads:
�mKDK T þ
X

r2EK ;r�K=L

Uk
K;rðu;pÞ

TK þ TL

2
¼
Z

K
g dx: ð21Þ
Recall that, for all K 2M, and all r 2 EK such that r � C1, the Dirichlet boundary condition (16) is given. We deduce from
(18) the relation imposed by the Neumann boundary condition for the thermal flux, letting hr ¼ 1 and 0 otherwise, for some
r 2 EK with r � C2:
FK;rðTÞ ¼
Z

r
qbðxÞdsðxÞ: ð22Þ
Note that the above relation is natural, accounting for the fact that FK;rðTÞ approximates the heat flux at the edge r. Finally,
we write (19) in a given control volume K:
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X
r2EK\Eint

Uk
K;rðu;pÞ ¼ 0: ð23Þ
The stencil of the scheme (20)–(23) is always determined by that of the diffusion operator.

As previously mentioned, in the case of orthogonal quadrilateral or parallelepiped grids, the diffusion flux through an edge r
gives the classical two-point difference scheme (10) and the barycenter coordinates are simply calculated by an arithmetic aver-
age, xr ¼ ðdL;rxK þ dK;rxLÞ=ðdL;r þ dK;rÞ. Hence, in this case, Eqs. (20)–(23) then read, for a given K 2 M:
Q ðKÞDu þ Q ðKÞ$p þ Q ðKÞu�$u þ Q ðKÞT ¼
Z

K
f dx;

EðKÞDT þ EðKÞu�$T ¼
Z

K
g dx;

MðKÞ
divu ¼ 0;

with

Q ðKÞDu ¼ Pr
X

r2EK ;r�K=L

mr
uL � uK

dK;r þ dL;r
þ

X
r2EK\Eext

mr
0� uK

dK;r

 !
;

Q ðKÞ$p ¼
X

r2EK ;r�K=L

mr
dL;r

dK;r þ dL;r
ðpL � pKÞnK;r;

Q ðKÞu�$u ¼
X

r2EK ;r�K=L

mr
dL;ruK þ dK;ruL

dK;r þ dL;r
� nK;r þ krðpK � pLÞ

� �
uK þ uL

2
;

Q ðKÞT ¼ �RaPr mK TK e3;

EðKÞDT ¼
X

r2EK ;r�K=L

mr
TL � TK

dK;r þ dL;r
þ

X
r2EK\Eext

mr
Tr � TK

dK;r
;

EðKÞu�$T ¼
X

r2EK ;r�K=L

mr
dL;ruK þ dK;ruL

dK;r þ dL;r
� nK;r þ krðpK � pLÞ

� �
TK þ TL

2
;

MðKÞ
divu ¼

X
r2EK ;r�K=L

mr nK;r
dL;ruK þ dK;ruL

dK;r þ dL;r
þ krðpK � pLÞ

� �
;

and with the Dirichlet boundary (16) applied to r � C1 and the Neumann boundary condition on r � C2 being reduced to
mrðTr � TKÞ=dK;r ¼ �

R
r qbðxÞdsðxÞ.
3.6. Some mathematical properties

The system of discrete Eqs. (20)–(23) is a system of non-linear equations. The mathematical proof of the existence of at
least one solution can be shown in the particular case Tb ¼ 0 and qb ¼ 0, which we consider in this section. Indeed, in this
case, we can show some a priori bounds on T and u. We first let h ¼ T in (18). Using the relation
Z

X
divk

DðT;u;pÞ PMT dx ¼ 0;
which results from (19), we get
k$DTk2
L2ðXÞd ¼

Z
X

g PMT dx:
Thanks to a discrete Poincaré inequality which follows from [5, Lemma 5.3], we get that there exists CT , only depending on
the regularity of the mesh and on g, but not on the size of the mesh, such that
k$DTkL2ðXÞd 6 CT :
We then let v ¼ u in (17). We get, thanks to (15) and (19),
Prk$Duk2
ðL2ðXÞdÞd þ

X
r2Eint ;r�K=L

mrkrðpL � pKÞ
2 ¼

Z
X
ðf þ RaPr PMTe3Þ � PMudx:
Again using the Poincaré inequality, we conclude that there exists Cu, only depending on the regularity of the mesh, on Ra, Pr,
f and g, but not on the size of the mesh, such that
k$DukðL2ðXÞdÞd 6 Cu:
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Hence, using the topological degree method, we can prove the existence of at least one solution. Moreover, these inequalities
are then sufficient to get compactness properties, which show that, from a sequence of discrete solutions with the space step
tending to zero, we can extract a converging subsequence, for suitable norms. Then we can prove that the limit of this sub-
sequence has a sufficient regularity, in relation with the weak sense provided by (3). It is then possible to pass to the limit on
(18), (17) and (19), using test functions which are interpolation of regular ones. We then get that the limit of the converging
subsequence satisfies (3).

4. Numerical validation

Numerical implementation is performed for three-dimensional domains. We first validate our results on known analytical
solutions which allow us to compute the scheme’s order of convergence. We then turn to a natural convection case which is
referenced in the literature.

The domains considered are either the unit cube or a circular centered cone. In both cases, we use structured (rectangular
and non-rectangular) meshes, and we denote by N the number of cells in each of the three space directions. The set of non-
linear Eqs. (20)–(23) is solved by an under-relaxed Newton method where the unknowns are the velocity uK , the pressure pK

and the temperature TK and Tr for all K 2 M and r 2 Eext \ C2. The solutions of the linear systems are computed with a par-
allel Generalized Minimal RESidual method provided by the scalable linear solvers package HYPRE with a preconditioning
based on the block Jacobi iLU factorization carried out by the Euclid library [6].
4.1. Analytical solutions

We consider two closed cavities, cubic or cone-shaped, in which the fluid flow and the heat transfer are known a priori. Let
pref , uref and Tref be some known pressure, divergence free velocity and temperature fields; we then compute f and g by Eqs.
(1a) and (1b) where we have set u 	 uref , p 	 pref and T 	 Tref .

For any regular function w (w ¼ ðuðiÞ, i ¼ 1; � � � ;3), p or T), the scheme’s relative accuracy for the usual L1, L2 and H1 norms
is measured by
�1ðwÞ ¼
max
K2M
jwK � wrefðxKÞj

max
K2M
jwrefðxKÞj

;

�2ðwÞ ¼

P
K2M

mKðwK � wrefðxKÞÞ2P
K2M

mKðwrefðxKÞÞ2

0B@
1CA

1=2

;

�H1 ðwÞ ¼

P
K2M

mK j $Kw� $wrefðxKÞj2P
K2M

mK j $wrefðxKÞj2

0B@
1CA

1=2

;

ð24Þ
where j � j denotes the usual Euclidean inner product in R3. For each of the above relative error, the scheme’s order of con-
vergence is defined by the mean slope of the logarithm of the relative error as a function of the logarithm of the largest cell
diameter maxK2MhK , the slope being calculated by a least square method.

Three different meshes are studied for the unit cubic enclosure. Except for the last mesh, the points xK are located at the
gravity center of the cells.
(1) The first mesh is an uniform mesh consisting of orthogonal parallelepipeds of size 1=N3.
(2) The second one (Fig. 5a) is constructed by a smooth mapping between the uniform mesh and the spatial coordinates [1].

The vertices xsði; j; kÞ ¼ xðlÞs ði; j; kÞ
� �

l¼1;...;3
of the elementary distorted cubes are defined by: 8ði; j; kÞ 2 ðNð½1;N þ 1�ÞÞ3,� �
xð1Þs ði; j; kÞ ¼ 1� cos
pði� 1Þ

2N
;

xð2Þs ði; j; kÞ ¼
ðj� 1Þ

N
þ 0:1 sin

2pðj� 1Þ
N

� �
sin

2pðk� 1Þ
N

� �
;

xð3Þs ði; j; kÞ ¼
ðk� 1Þ

N
þ 0:1 sin

2pðj� 1Þ
N

� �
sin

2pðk� 1Þ
N

� �
:

(3) The third mesh (Fig. 5b) is constructed from the first one in the following way: the points xK remains at the gravity
centers of the basic mesh whereas the vertices xs of the cells are randomly displaced in each space direction at most
of 0:45=N. Unlike the previous mesh, which consists in hexahedra with plane faces, the four edges of a face are now not
included in a same plane, with the exception of edges which belong to the boundaries of the cubic domain. Since the
consistency of the discrete gradient defined in (5) (and therefore of that defined in (7)) holds if the faces r are plane,
we replace each of the non-planar faces by two tria